Regulation of surface coat exchange by differentiating African trypanosomes.

نویسندگان

  • Amy E Gruszynski
  • Frederick J van Deursen
  • Maria C Albareda
  • Alexander Best
  • Kshitiz Chaudhary
  • Laura J Cliffe
  • Laura del Rio
  • Joe Dan Dunn
  • Louise Ellis
  • Krystal J Evans
  • Juliana M Figueiredo
  • Nicholas A Malmquist
  • Yusuf Omosun
  • Jennifer B Palenchar
  • Sara Prickett
  • George A Punkosdy
  • Giel van Dooren
  • Qian Wang
  • Anant K Menon
  • Keith R Matthews
  • James D Bangs
چکیده

African trypanosomes (Trypanosoma brucei) have a digenetic lifecycle that alternates between the mammalian bloodstream and the tsetse fly vector. In the bloodstream, replicating long slender parasites transform into non-dividing short stumpy forms. Upon transmission into the fly midgut, short stumpy cells differentiate into actively dividing procyclics. A hallmark of this process is the replacement of the bloodstream-stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procyclin. Pre-existing VSG is shed by a zinc metalloprotease activity (MSP-B) and glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC). We now provide a detailed analysis of the coordinate and inverse regulation of these activities during synchronous differentiation. MSP-B mRNA and protein levels are upregulated during differentiation at the same time as proteolysis whereas GPI-PLC levels decrease. When transcription or translation is inhibited, VSG release is incomplete and a substantial amount of protein stays cell-associated. Both modes of release are still evident under these conditions, but GPI hydrolysis plays a quantitatively minor role during normal differentiation. Nevertheless, GPI biosynthesis shifts early in differentiation from a GPI-PLC sensitive structure to a resistant procyclic-type anchor. Translation inhibition also results in a marked increase in the mRNA levels of both MSP-B and GPI-PLC, consistent with negative regulation by labile protein factors. The relegation of short stumpy surface GPI-PLC to a secondary role in differentiation suggests that it may play a more important role as a virulence factor within the mammalian host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic manipulation of African trypanosomes as a tool to dissect the immunobiology of infection.

The variant surface glycoprotein (VSG) coat of African trypanosomes exhibits immunobiological functions distinct from its prominent role as a variant surface antigen. In order to address questions regarding immune stealth effects of VSG switch-variant coats, and the innate immune system activating effects of shed VSG substituents, several groups have genetically modified the ability of trypanos...

متن کامل

A new approach to chemotherapy: drug-induced differentiation kills African trypanosomes

Human African trypanosomiasis (sleeping sickness) is a neglected tropical disease caused by Trypanosoma brucei spp. The parasites are transmitted by tsetse flies and adapt to their different hosts and environments by undergoing a series of developmental changes. During differentiation, the trypanosome alters its protein coat. Bloodstream form trypanosomes in humans have a coat of variant surfac...

متن کامل

Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system.

Host resistance to African trypanosomiasis is partially dependent on an early and strong T-independent B-cell response against the variant surface glycoprotein (VSG) coat expressed by trypanosomes. The repetitive array of surface epitopes displayed by a monotypic surface coat, in which identical VSG molecules are closely packed together in a uniform architectural display, cross-links cognate B-...

متن کامل

Maintaining the protective variant surface glycoprotein coat of African trypanosomes.

The African trypanosome Trypanosoma brucei has a precarious existence as an extracellular parasite of the mammalian bloodstream, where it is faced with continuous immune attack. Key to survival is a dense VSG (variant surface glycoprotein) coat, which is repeatedly switched during the course of a chronic infection. New data demonstrate a link between VSG synthesis and cell cycle progression, in...

متن کامل

African trypanosomes: the genome and adaptations for immune evasion.

The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 147 2  شماره 

صفحات  -

تاریخ انتشار 2006